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Abstract. Weak Bose- and Fermi-type quantizations are defined via deformations of algebras
generated by characters from linear topological spaces into commutative or Grassmann algebras,
respectively. This yields an inherent symmetrization and antisymmetrization, respectively, of
deformed products with respect to undeformed products. Combining both quantizations one obtains
a weak supersymmetric quantization of aZ2-graded algebra. For Bose-type quantizations a Hilbert
space representation based on quasi-invariant measures is outlined.

1. Introduction

Deformations as a tool for quantization schemes have been in use for about 20 years (see
[1–11]). However, these publications are exclusively concerned with quantizations which, in
our terminology, are those of Bose type. This is most probably due to the lack of a widely
accepted convincing description of non-quantized classical dynamical systems (including
relativistic spinor equations) in the framework of Grassmann algebras (see [11–13]). An
additional reason might be the need for more sophisticated techniques for integration in
(topological) Grassmann algebras. Since for our purpose it suffices to use Grassmann algebras
in a rather casual way, vaguely based on Bryce DeWitt’s introduction of infinite-dimensional
Grassmann algebras (see [13] for an excellent introduction to this and related topics), we
have abstained here from going into detail on this topic. In this paper we present two
approaches to quantization by deformation. One that is based on of what we have called
d-contractions (these are closely related to inner products of Clifford algebras, see [11]), the
other one uses a generalized concept of characters and projective representations of groups
generated by these characters. These schemes are equivalent, their difference being purely
technical. That is, the choice between them depends on which particular problem one wants to
consider. Both concepts have in common that they allow us to basically treat Bose- and Fermi-
type quantizations in the same setting. This provides a general basis for a supersymmetric
quantization with either of these schemes. In an appendix we have outlined a representation
of Bose-type quantizations with infinitely many degrees of freedom on Hilbert spaces with
quasi-invariant measures, following thereby closely a construction first provided by Gel’fand
and co-workers (see [17]). Notwithstanding a few sketchy examples which refer to physics
the paper is mainly concerned with mathematical statements. For this reasons it is organized
in a predominantly mathematical fashion (lemma, corollary, theorem, etc). This is not meant
to bel’art pour l’art but rather to outline the mathematical framework in an appropriate way.

∗ Dedicated to G Pickert on the occasion of his 80th birthday.
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For lack of a complete collection of literature dealing with the subjects treated here, it may
happen that unintentionally some relevant contributions of other authors have not been taken
into regard. If this is the case no claim to priority or originality is made.

2. Deformation by contraction

Definition 1. LetA be an algebra overC with an involutionAB → B∗A∗ which is generated
by a unit element1A and a set of elementsa(j), j ∈ J . LetA(m),m ∈ N, be the complex linear
hull of monomialsa(j1) · · · a(jm), (j1, . . . , jm) ∈ Jm and letA(0) = C1A. LetA1, A2, A3 ∈ A
be arbitrary monomials, and letKd : A×A→ Abe a bilinear map which is defined as follows:

Kd : A(m) × A(n)→
[(m+n)/2]⊕
j=1

A(m+n−2j) for mn 6= 0 (1)

Kd : A(m) × A(n)→ {0} for mn = 0 (2)

Kd(A1, A2A3) +A1Kd(A2, A3) +Kd(A1,Kd(A2, A3))

= Kd(A1A2, A3) +Kd(A1, A2)A3 +Kd(Kd(A1, A2), A3) (3)

Kd(A1, A2) = Kd(A∗2, A∗1)∗. (4)

By defining a binary operation,

A× A→ A : (A,B)→ A ◦ B = AB +Kd(A,B) (5)

A (as a linear space) becomes by a standard result in the Gerstenhaber deformation theory
of algebras (cf [1]) an associative algebra overC with a unit element1A and an involution
A ◦ B → B∗ ◦ A∗.

The map defined by (5) will be called a deformation of the algebraA induced by the map
Kd ; the latter will be called a d-contraction forA.

3. Deformation by a projective representation

We shall now present another approach to deformations namely quantizations which use a
projective representation of groups of so-calledA-valued characters. Both this approach and
that defined above are equivalent. The difference is rather technical, depending on which
particular problem one wants to consider.

Definition 2. Let A be an algebra overC with a unit element1A, and letX be a linear
topological space. A mapW : X → A : f → W(f ) shall be called anA-valued character
ofX (in short, anA-character) if there holds:

(a) W(αf )W(βf ) = W((α + β)f ) ∀f ∈ X, ∀α, β ∈ C;
(b) W(0) = 1A;
(c) w : X→ A : f → w(f ) := limα→0[(−W(0) +W(αf ))/α] ≡ ∂αW(αf )|α=0, α ∈ C, is

a linear map (the limit being defined in some topology).

Remark 1. The reason for callingW a character is obvious. If, for example,A is an algebra
of complex-valued functionsf : RN → C andW(x) = exp[ixw] x ∈ RN,w ∈ RN , then
W is a character in the usual sense. The generalization given here will become useful when
considering Grassmann algebras. Note thatW(f )W(g) is not required to be equal toW(f +g)
unlessf andg are linearly dependent.
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Corollary 1. The set ofW(z, f ) ≡ ezW(f ), z ∈ C, f ∈ X, constitutes with respect to the
multiplication inA a group which shall be denoted byGW(A, X).

Lemma 1. Let A, X and W be as in definition 2, and letG : X × X → C be a
bilinear map. Letf1, f2, . . . , fm+n be any finite sequence of elements inX, let W1 ≡
W(z1, f1) · · ·W(zm, fm),W2 ≡ W(zm+1, fm+1) · · ·W(zm+n, fm+n), and let h̄ be a real or
complex parameter. Then the binary relation defined by

W1 ◦W2 := exp

[
h̄

m∑
j=1

n∑
k=1

G(fj , fm+k)

]
W1W2

is associative.

Proof. LetW3≡ W(zm+n+1, fm+n+1) · · ·W(zm+n+p, fm+n+p), and further let

σ(1, 2) ≡ h̄
m∑
j=1

n∑
k=1

G(fj , fm+k)

σ (1, 3) ≡ h̄
m∑
j=1

p∑
l=1

G(fj , fm+n+l)

σ (2, 3) ≡ h̄
n∑
k=1

p∑
l=1

G(fm+k, fm+n+l)

σ (12, 3) ≡ h̄
m+n∑
j=1

p∑
l=1

G(fj , fm+n+l)

σ (1, 23) ≡ h̄
m∑
j=1

n+p∑
k=1

G(fj , fm+k).

Thenσ(12, 3) = σ(1, 3)+σ(2, 3)andσ(1, 23) = σ(1, 2)+σ(1, 3). Hence(W1◦W2)◦W3=
exp[σ(1, 2)+σ(12, 3)]W1W2W3 = exp[σ(1, 2)+σ(1, 3)+σ(2, 3)]W1W2W3 = exp[σ(2, 3)+
σ(1, 23)]W1W2W3 = W1 ◦ (W2 ◦W3). �

Corollary 2. The set ofW(z, f ), z ∈ C, f ∈ X, together with the multiplication introduced
in lemma 1 is a group which shall be denoted byGW(A, X, h̄G).

Remark 2. Let F(j,m) = (fj , fj+1, . . . , fm) and

ρ(F (m, n), F (p, q)) = exp

[
h̄

m+n∑
j=m

p+q∑
k=p

G(fj , fm+k)

]
.

Then

ρ(F (1, m), F (m, n))ρ(F (1, m + n), F (m + n, p))

= ρ(F (1, m), F (m, n + p))ρ(F (m, n), F (n, p))

and ρ(0, F (j, k)) = ρ(F (r, s),0) = 1 for arbitrary j, k,m, n, p, r, s ∈ N. That is,
ρ : X(m) × X(n) → C, (m, n) ∈ N2, is a multiplier for the groupGW(A, X). In other
words,GW(A, X,G) is a projective representation ofGW(A, X) = GW(A, X,G)|h̄=0.
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Corollary 3. If A(X,W) andA(X,W, h̄G) are the algebras generated by theW(f ) and
w(f ) = ∂αW(αf )|α=0 (see definition 2),f ∈ X, with respect to the multiplication inA and
the multiplication defined in lemma 1, respectively, thenA(X,W, h̄G)|h̄=0 = A(X,W).
Definition 3. The algebraA(X,W, h̄G) defined in corollary 3 will be called a projective
deformation ofA(X,W).
Remark 3. Note that the d-contraction corresponding to a projective deformation satisfies
Kd(w(f ),w(g)) = G(f, g).

We shall now consider two examples with which we shall deal exclusively in the remainder
of this paper: the (projective) deformation of a commutative algebraA0 and a Grassmann
algebraA1. The first example, in which the bilinear functionalG is assumed to be skew-
symmetric, shall be called aBose-typeand the second example, in whichGwill be symmetric,
aFermi-type deformationsince these examples provide a mathematical framework for (weak)
Bose and Fermi quantizations, respectively. CombiningA0 andA1 will finally yield a Bose–
Fermi-type deformationthat can be related to a (weak) supersymmetric quantization.

4. Bose-type deformation

Definition 4. The deformation (cf lemma 1)A0(X,W, h̄G) of the commutative algebra
A0(X,W) will be called of Bose type ifG is a non-degenerate skew-symmetric bilinear form.

Remark 4. For a Bose-type deformation we shall in the following write i0/2 instead ofG.
Let W : X → S1 = {λ ∈ C | |λ| = 1} : f → W(f ) be a continuous character. Then
by a known theorem (cf [14], p 370) there exists a linear functionalw : X → R such that
W(f ) = exp[iw(f )], f ∈ X. Clearly,A0(X,W, ih̄0/2) is a non-commutative algebra over
C whose product is defined byW(f ) ◦W(g) = exp[ih̄0(f, g)/2]W(f + g).

The meaning of ‘Bose type’ will become clear by the following theorem which exhibits
an intrinsic symmetrization property.

Theorem 1. Let A0(X,W, ih̄0/2) be a Bose-type deformation, and let thef1, . . . , fn be
arbitrary elements inX. Then

(1/n!)
∑
σ

w(fσ(1)) ◦ · · · ◦ w(fσ(n)) = w(f1) · · ·w(fn)

where the sum runs over all permutationsσ : (1, . . . , n)→ (σ (1), . . . , σ (n)).

Proof. Let aj ≡ w(fj ), S+(a1 ◦ · · · ◦ an) ≡ (1/n!)
∑

σ aσ(1) ◦ · · · ◦ aσ(n) and sj ≡
S+(aj+1◦ · · · ◦aj+n) (modn+1). Summations will run in this proof from 1 ton+1(modn+1).
It is not difficult to prove that(n + 1)S+(a1 ◦ · · · ◦ an+1) =

∑
j aj ◦ sj =

∑
j sj ◦ aj .

That is, S+(a1 ◦ · · · ◦ an+1) =
∑

j (aj ◦ sj + sj ◦ aj )/2(n + 1). Further,S+(a1, a2) =
a1 ◦ a2 + a2 ◦ a1 = 2a1a2 − ih̄(0(f1, f2) + 0(f2, f1))/2 = 2a1a2. Proceeding by induction
assume thatS+(aj+1 ◦ · · · ◦ aj+n) = aj+1aj+2 · · · aj+n (modn + 1). Then

S+(a1 ◦ · · · ◦ an+1) =
∑

j
(aj ◦ sj + sj ◦ aj )/(2n + 2)

= (−i)n∂α1 . . . ∂αn+1

∑
j
[(W(αjfj )) ◦ (W(αj+1fj+1 + · · · + αj+nfj+n))

+(W(αj+1fj+1 + · · · + αj+nfj+n)) ◦ (W(αjfj ))]/(2n + 2) |α1=···=αn+1=0

=
∑

j
[2(ajaj+1 · · · aj+n)− ih̄(0(fj , fj+1 + · · · + fj+n)

+0(fj+1 + · · · + fj+n, fj ))/2]/(2n + 2)

=
∑

j
(ajaj+1 · · · aj+n)/(n + 1) = a1a2 · · · an+1. �
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Example 1. Let X = R2n be the space of 2n-tuplesz = (x, y), and letX′ = X be the
space of 2n-tuplesw = (p, q) of momentum and space variablesp = (p1, . . . , pn) and
q = (q1, . . . , qn), respectively. That is,w(z) = p1q1 + · · · + pnqn. Let 0 be the symplectic
form0(z, ζ ) = xη−yξ = x1η1−y1ξ1+· · ·+xnηn−ynξn. ThenA0(X,W, ih̄0/2) corresponds
to a canonical quantization of a (classical) dynamical system withn degrees of freedom.

Example 2. Let (Y, L2(Rm), Y ′) be a Gel’fand triple whereY is a real locally convex space,
letw = (π, ϕ) ∈ X′ = Y ′ × Y ′, f = (f1, f2) ∈ X = Y × Y andw(f ) = 〈π, f1〉 + 〈ϕ, f2〉.
Finally, let (here and in the following〈· , ·〉 shall denote an inner product for a function space)
0 : X × X → R : (f, g) → 0(f, g) = 〈f1, g2〉 − 〈f2, g1〉. ThenA0(X,W, ih̄0/2)
corresponds to a weak canonical quantization of a real scalar fieldφ(t, x), (t, x) ∈ R × Rm,
whereφ(x, t) ≡ ϕ(x) and∂tφ(x, t) ≡ π(x) with t arbitrary fixed.

Example 3. Let (X,L2(R), X′) be a Gel’fand triple whereX is a real locally convex space
of functionsf : R → R, let 0(f, g) = 〈f, ∂xg〉, w(f ) = 〈v, f 〉, andv(x) ≡ u(t, x) with
t ∈ R fixed. ThenA0(X,W, ih̄0/2) corresponds to a weak canonical quantization of a real
KdV field (with u(t, x) satisfying a KdV equation, say,∂tu− ∂3

xu− 3∂x(u2) = 0).

5. Fermi-type deformation

Now letA1 be a Grassmann algebra overC with a unit element1A1 and an involution, letX
be a linear topological space, and letw : X → A1 be linear and continuous (with respect to
some topology forA1). That is,w(f )w(g) = −w(g)w(f ) and (this describes an involution)
(w(f )w(g))∗ = w(g)∗w(f )∗ for all f, g ∈ X. Furthermore, defineW(f ) := 1A1 + w(f ).
It is easily verified thatW is anA1-character. Indeed, we could writeW(f ) = exp[w(f )],
defining the exponential ofw(f ) by its Taylor expansion. Sincew(f )m = 0 form > 2 this
expansion boils down to the above given definition ofW(f ). Finally, letA1(X,W) denote the
algebra generated by thew(f ), f ∈ X.

Definition 5. If S : X × X → C is bilinear, symmetric and non-degenerate, then
A1(X,W, h̄S/2) is called a (projective) Fermi-type deformation ofA1(X,W).

The following theorem will exhibit an intrinsic antisymmetrization property of Fermi-type
deformations.

Theorem 2. Let A1(X,W, h̄S/2) be a Fermi-type deformation, and let thef1, . . . , fn be
arbitrary elements inX. Then

(1/n!)
∑
σ

sign(σ )w(fσ(1)) ◦ · · · ◦ w(fσ(n)) = w(f1) · · ·w(fn)

where the sum runs over all permutationsσ : (1, . . . , n)→ (σ (1), . . . , σ (n)).

Proof. Let bj ≡ w(fj ), S−(b1 ◦ · · · bn) ≡ (1/n!)
∑

σ sign(σ ), (bσ(1) ◦ · · · ◦ bσ(n)) and
Bj ≡ sign(j, j + 1, . . . , j + n)S−(bj+1 ◦ bj+2 ◦ · · · ◦ bj+n) (modn + 1). Summations
will run in this proof from 1 to n + 1 (modn + 1). It is not difficult to prove that
(n + 1)S−(b1 ◦ · · · ◦ bn+1) =

∑
j bj ◦ Bj = (−1)n

∑
j Bj ◦ bj , that is,

S−(b1 ◦ · · · ◦ bn+1) =
∑
j

(bj ◦ Bj + (−1)nBj ◦ bj )/(2n + 2). (∗)
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Since by assumptionS(f, g) = S(g, f ) ∀ f, g ∈ X, one hasw(f ) ◦ w(g) − w(g) ◦
w(f ) = 2w(f )w(g). Proceeding by induction assume thatS−(bj+1 ◦ bj+2 ◦ · · · ◦ bj+n) =
bj+1bj+2 · · · bj+n (modn + 1). Then by(∗)
S−(b1 ◦ · · · ◦ bn+1) =

∑
j

sign(j, j + 1, . . . , j + n)[bj ◦ ((bj+1 · · · bj+n)

+(−1)n(bj+1 · · · bj+n) ◦ bj ]/(2n + 2).

Hence

(bj+1 · · · bj+n) ◦ bj = bj+1 · · · bj+nbj +
n∑
k=1

(−1)n−kS(fj+k, f,j )(bj+1 · · · bj+n)/2

= (−1)n
[
(bjbj+1 · · · bj+n)−

n∑
k=1

(−1)k−1S(fj+k, f,j )

n∏
r=1
r 6=k

bj+r/2

]

bj ◦ (bj+1 · · · bj+n) = (bjbj+1 · · · bj+n) +
n∑
k=1

(−1)k−1S(fj+k, f,j )

n∏
r=1
r 6=k

bj+r/2

and therefore

S−(b1 ◦ bj+2 ◦ · · · ◦ bn+1) =
∑
j

sign(j, j + 1, . . . , j + n)(bj , bj+1 · · · bj+n)/(n + 1)

= b1b2 · · · bn+1. �

Example 4. Let B be a Grassmann algebra overC which is generated by a unit element1B
and a set of elementsbj , j ∈ N, together with their adjointsb∗j . That is, we assumeB to have
an involutionλAB → λ̄B∗A∗, λ ∈ C. LetB andB∗ be the subalgebras generated by the sets
{1B, b1, b2, . . .} and{1B, b∗1, b∗2, . . .}, respectively. Now letKd be a d-contraction ofB such
thatKd(B,B) = Kd(B∗,B∗) = {0}. That is, ifB(m), m ∈ N, is the complex linear hull of
monomials in thebj with m factors, ifB∗(m) is its adjoint, andB(0) = B∗(0) = 1B, then

Kd : B(m) × B∗(n)→
[(m+n)/2]⊕
j=1

B(m−j)B∗(n−j) for mn 6= 0 (6)

Kd : B(m) × B∗(n)→ {0} for mn = 0. (7)

By hypothesisAB = −BA = (B∗A∗)∗ forA = αbj+βb∗k , B = λbr+µb∗s wherej, k, r, s ∈ N
andα, β, λ, µ ∈ C are arbitrary. Thus ifB1 ∈ B(m) andB2 ∈ B(n) then

B1 ◦ B2 = B1B2 = (−1)mnB2B1 (8)

B∗1 ◦ B∗2 = B∗1B∗2 = (−1)mnB∗2B
∗
1 (9)

B1B
∗
2 = (−1)mnB∗2B1. (10)

Hence, writing [B1, B2]+ ≡ B1 ◦ B2 +B2 ◦ B1,

[B1, B2]+ = (1 + (−1)mn)B1B2 (11)

[B∗1, B
∗
2]+ = (1 + (−1)mn)B∗1B

∗
2 (12)

[B1, B
∗
2]+ = (1 + (−1)mn)B1B

∗
2 +Kd(B1, B

∗
2) +Kd(B

∗
2, B1). (13)
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It follows from (8)–(10) together with (6) that ifm+n is even thenKd(B1, B
∗
2) andKd(B∗2, B1)

are in the commutant ofB. Further, it can easily be shown thatKd(B1, B
∗
2) = Kd(B∗2, B1) if

Kd is symmetric, that is ifKd(bj , b∗k ) = Kd(b∗k , bj ) ∀j, k ∈ N. Summing up these results we
have proved

Proposition 1. LetB(m), m ∈ N, be the complex linear hull of monomials inbj withm factors,
and letB∗(m) be its adjoint. LetB1 ∈ B(m), B∗2 ∈ B∗(n) be arbitrary withm andn odd (but
otherwise arbitrary). Then, writing[M1,M2]− ≡ M1 ◦M2 −M2 ◦M1,

[B1, B2]+ = [B∗1, B
∗
2]+ = 0 (14)

[B1, B
∗
2]+ = Kd(B1, B

∗
2) +Kd(B

∗
2, B1) ∈ commutant(B) (15)

[B1, B2]− = 2B1B2 (16)

[B∗1, B
∗
2]− = 2B∗1B

∗
2 (17)

[B1, B
∗
2]− = 2B1B

∗
2 +Kd(B1, B

∗
2)−Kd(B∗2, B1). (18)

If Kd is symmetric then the last equation becomes[B1, B
∗
2]− = 2B1B

∗
2 .

Example 5. Let B be the Grassmann algebra of example 4, and let

ψα(t, x) =
∑
j∈N

ψα,j (t, x)bj +
∑
j,k,l∈N

ψα,jkl(t, x)bjbkbl + · · · t ∈ R x ∈ Rm

whereα ∈ {0, 1, . . . , N} and theψα,j (t, x), ψα,jkl(t, x), . . . are complex-valued functions or
distributions. Furthermore, letf ∈ X = S(Rm) andψα(f ) ≡ 〈f,ψα(t, ·)〉 for t arbitrary
fixed. LetKd be a symmetric d-contraction forB. That is,

Kd(ψα(f ), ψβ(g)) = Kd(ψ∗α(f ), ψ∗β(g)) = 0

and

h̄Sαβ(f, g)/2≡ Kd(ψα(f ), ψ∗β(g)) = Kd(ψ∗β(g), ψα(f )) ∈ commutant(B).

Let ∂0 ≡ ∂/∂t and∂r ≡ ∂/∂xr, 1 6 r 6 m. An easy calculation using the above established
relations proves that

[(∂λψα)(f )ψ
∗
α(g), ψβ(g)]− = h̄Sαβ(f, g)(∂λψα)(f ). (19)

Let

Q =
N∑
α=0

∫
Rm
ψα(t, x)ψ

∗
α(t, x)dx ≡ −

N∑
α=0

∫
Rm
ψ∗α(t, x)ψα(t, x)dx

and assume that

∂0Q = 0. (20)

Further, let for allλ ∈ {0, 1, . . . , m}

Pλ = −i
N∑
α=0

∫
Rm
(∂λψα)(t, x)ψ

∗
α(t, x)dx ≡ i

N∑
α=0

∫
Rm
ψ∗α(t, x)(∂λψα)(t, x)dx.

By partial integration it follows with (20) thatPλ = P ∗λ . Let hy(x) ≡ h(x + y), so that
ψα(t, x) ≡ ψα(δx). If

Sαβ(δy, fx) = δαβ〈δy, fx〉1B = δαβf (x − y)1B
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then

i[Pλ,ψβ(fx)] = h̄(∂λψβ)(fx) i[Pλ,ψ
∗
β(fx)] = h̄(∂λψ∗β)(fx). (21)

ThusPλ can be interpreted as the components of an energy–momentum vector associated with
some Lagrangian, andQ represents a ‘charge’ which by (20) is a constant of motion. In
particular, letN = 3 and assume theψα to transform like the components of a Dirac spinor.
Let γα, 06 α 6 3, be Dirac matrices. LetL(x) = L0(x) + L1(x) be a Lagrangian where

L0(x) = 1
2i
∑
λ,α,β

(γ0γλ)αβ [ψ∗α(t, x)(∂λψβ)(t, x)− (∂λψα)(t, x)ψ∗β(t, x)]

and where

L1(x) = L1(x)
∗ = M(ψ(t, x), ψ∗(t, x)) ψ = (ψ0, ψ1, ψ2, ψ3)

is a Lorentz invariant which does not contain derivatives ofψα andψ∗α and also is compatible
with (20) (that is, is gauge invariant). As a consequenceψ (which assumes values inB4) must
satisfy a (possible semilinear) Dirac equation.

6. Deformation of graded Grassmann algebras

We shall finally consider the deformation of a graded Grassmann algebra. LetX0 andX1

be (real) linear topological spaces, letX = X0 +̇ X1, and letE0 andE1 be the projectors
ontoX0 andX1, respectively. Letw be a linear map fromX into an algebraA(X,w) over
C which is generated by a unit element and the set ofw(f ) = w0(f ) + w1(f ), w0(f ) =
w(E0f ),w1(f ) = w(E1f ), f ∈ X, as follows:

w0(f )w0(g) = w0(g)w0(f ) (22)

w1(f )w1(g) = −w1(g)w1(f ) (23)

w0(f )w1(g) = w1(g)w0(f ). (24)

Theorem 3. Let A0 and A1 be the subalgebras ofA(X,w) generated by thew0(f ) and
w1(f ), f ∈ X, respectively. LetKd be d-contraction forA(X,w) which separately also
holds onA0 and A1. Further, let A(m)0 and A(m)1 , m ∈ N, be the subalgebras ofA0

andA1 of monomials of degreem in the w0(f ) and w1(f ), f ∈ X, respectively. Then
Kd(A,B) = Kd(B,A) for arbitrary A ∈ A(m)0 andB ∈ A(n)1 wherem, n ∈ N are arbitrary.

Proof. FromAB = BA andB2 = 0 there follows after some calculation

Kd(B
2, A)−Kd(A,B2) = 0 + 0= [Kd(B,A)−Kd(A,B)]B +B[Kd(B,A)−Kd(A,B)]

+AKd(B,B)−Kd(B,B)A +Kd(B,Kd(B,A)−Kd(A,B)) +Kd(Kd(B,A)

−Kd(A,B), B) +Kd(A,Kd(B,B))−Kd(Kd(B,B),A).
Let a = w0(f ) andb = w1(g) (for arbitraryf, g ∈ X). Then, sinceKd(a, b) ∈ C and

Kd(α, F ) = 0 for α ∈ C andF ∈ A(X,w) arbitrary, it follows thatKd(a, b) = Kd(b, a).
We proceed by induction. That is, we assume thatKd(A,B) = Kd(B,A) for B = b1 · · · bn,
bj = w1(gj ). Then again by some calculation, using the assumed commutativity of the
elements ofA0 andA1 and the properties ofKd , one obtains

Kd(A, bB)−Kd(bB,A) = Kd(b, B)A− AKd(b, B) + b[Kd(A,B)−Kd(B,A)]
+Kd(b,Kd(A,B)−Kd(B,A)) +Kd(Kd(b, B),A)−Kd(A,Kd(b, B))
+[Kd(A, b)−Kd(b,A)]B +Kd(Kd(A,B)−Kd(B,A), B).
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By inductionKd(A, b) = Kd(b,A),Kd(A,B) = Kd(B,A) and, sinceKd(b, B) ∈
A(n)1 , alsoKd(Kd(b, B),A) = Kd(A,Kd(b, B)). So it finally follows thatKd(A, bB) =
Kd(bB,A). This proves the theorem. �

Corollary 4. LetF0 ∈ A0 andF1 ∈ A1 be arbitrary. Then under the assumptions of theorem 3
there holdsF0 ◦ F1 = F1 ◦ F0.

Definition 6. A deformationA(X,w,Kd) of A(X,w) will be called a Bose–Fermi-
type or supersymmetric deformation ifKd(w0(f ), w0(g)) = −Kd(w0(g), w0(f )) and
Kd(w1(f ), w1(g)) = Kd(w1(g), w1(f )).
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Appendix. Regular Hilbert space representations of Bose-type quantizations

Let A(X,W, ih̄0/2) be a projective Bose-type deformation as defined in the previous
section. AssumeX to be real, countably normed, nuclear, and belong to a Gel’fand triple
X ⊂ H = L2

real(Rm) ⊂ X′ (for example, letX be the space of real rapidly decreasing
functionsf : Rm→ R). Then let

R(W(f ))W(g) := W(f ) ◦W(g) = exp[ih̄0(f, g)]W(f + g). (A1)

Since the skew-symmetric bilinear functional0 : X×X→ R was assumed to be continuous
in each argument there exists by the kernel theorem (cf [15]) a linear mapK : X→ X so that
0(f, g) = 〈Kf, g〉 for all f, g ∈ X where〈· , ·〉 denotes the inner product forH. Let ν8 be a
bounded (complex) measure onX, and let8(w) = ∫

X
W(g) dν8(g). Then by (A3)

R(W(f ))8(w) =
∫
X

exp(i〈w + h̄Kf/2, g〉)W(g) dν8(g) = 8(w + h̄Kf/2)

wherew(g) ≡ 〈w, g〉, etc. In view of the finite-dimensional case, that is, forX = R2n,
one might be tempted to assume that the mapR(W(f )) : 8(w) → R(W(f ))8(w) =
8(w + h̄Kf/2)) is a unitary map in some Hilbert spaceL2(X′, µ) (containing functions
8(w)). However, this would be true only if the range ofK were an invariant subspace relative
to the measure space(X′,B(X′), µ), B(X′) being the family of Borel sets ofX′. That is, one
should have dµ(w) = dµ(w + f ) for all w ∈ X′ andf ∈ X. Since, in general,X′ will not
bear a locally compact topology, such a condition is too stringent: it could happen (cf [16])
that the only measure to comply with it is the zero measure. The following proposition will
show how to obtain a representation in which theW(f ), f ∈ X, are unitary.

Proposition 2. LetX ⊂ H ⊂ X′ be a Gel’fand triple, and letA(X,W, ih̄0/2) be a Bose
deformation. Then there exists a (non-unique) positive,σ -additive, normed and quasi-invariant
measureµ onX′, and a functionχµ : X′ ×X′ → R+ with the property

χµ(w,w + f )χµ(w + f,w + f + g) = χµ(w,w + f + g) (A2)

for all w ∈ X′ andf, g ∈ X, so that the linear mapRµ : A(X,W, ih̄0/2)→ B(L2(X′, µ)):

Rµ(W(f ))8(w) = χµ(w,w + h̄Kf/2)1/2W(f )8(w + h̄Kf/2) (A3)

is a ∗-homomorphism, and{Rµ(W(f ))|f ∈ X} is a group of unitary operators in
B(L2(X′, µ)).
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Proof. The assumed properties ofX guarantee (cf [16]) the existence of measuresµ on
X′ which are as described. The quasi-invariance implies the existence of a Radon–Nikodym
derivativeχµ(w,w+f ) = dµ(w+f )/dµ(w) > 0 which satisfies (28). Let8,9 ∈ L2(X′, µ).
Then by definition

〈8,Rµ(W(f ))9〉 =
∫
X′
9(w)W(f )8(w + h̄Kf/2)χmu(w,w + h̄Kf/2)1/2 dµ(w)

=
∫
X′
W(−f )9(w − h̄Kf/2)χmu(w,w + h̄Kf/2)1/28(w) dµ(w)

= 〈Rµ(W(−f )9,8〉 = 〈Rµ(W(f )∗)ψ, φ〉. (A4)

Hence for allf ∈ X (using the same notation for taking the adjoint inA(X,W, ih̄0/2) and
B(L2(X′, µ)))

Rµ(W(f ))
∗ = Rµ(W(−f )) = Rµ(W(f )∗).

Substituting in (30)9 = Rµ(W(f ))8 one obtains (‖ · ‖ denotes the norm inL2(X′, µ))
‖Rµ(W(f ))9‖ = ‖9‖. Further, by (28)

Rµ(W(f ))(Rµ(W(g))) = χµ(w,w + h̄Kf/2)1/2χµ(w + h̄Kf/2, w + h̄K(f + g)/2)1/2

× exp(ih̄〈Kf, g〉/2)W(f + g)8(w + h̄K(f + g)/2)

= χµ(w,w + h̄K(f + g)/2)1/2

× exp(ih̄〈Kf, g〉/2)W(f + g)8(w + h̄K(f + g)/2)

= Rµ(W(f ) ◦W(g))8(w).
SinceW(f )−1 = W(−f ) = W(f )∗,W(0) = 1A andχµ(w,w) = 1, there follows

Rµ(W(f ) ◦W(f )−1)8(w) = Rµ(1A)8(w) = 8(w)
so that finally

Rµ(W(f )
∗) = Rµ(W(f )−1) = Rµ(W(f ))−1 = Rµ(W(f ))∗.

This proves the assertion. �

Remark 5. The non-uniqueness ofµ reflects (cf [16]) the existence of (infinitely many)
different non-equivalent representationsRµ. These representations also make sense for finite
systems, for example, whenµ is chosen a Gauss measure on the (finite-dimensional) phase
space.Rµ is called aleft-regularµ-representationof A(X,W, ih̄0/2) (by replacingh̄ by−h̄
one obtains aright-regularµ-representationof A(X,W, ih̄0/2)).

Remark 6. To represent byRµ larger classes of functions, one can use Fourier transforms
(recall that theW(f ) are characters). For example, if

F(w(f1), . . . , w(fn)) = (2π)−n/2
∫
Rn
F̂ (α1, . . . , αn)W(α1f1 + · · · + αnfn)d(α1, . . . , αn)

then

Rµ(F (w(f1), . . . , w(fn)))8(w) = (2π)−n/2
∫
Rn
F̂ (α1, . . . , αn)W(α1f1 + · · · + αnfn)

×8χ(w,w + h̄K(α1f1 + · · · + αnfn)/2)d(α1, . . . , αn)
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where8χ(w,w
′) = χµ(w,w′)1/28(w′). In particular,

Rµ(w(f1), . . . , w(fn))8(w) =
n∏
j=1

(w(fj )− ih̄〈Kfj , δ/δg〉/2)8χ(w, g)|g=0

where〈k, δ/δg〉λ(g) = (δλ(g)/δg)(k) = limε↓0[ε−1(λ(g + εk)− λ(g))]. If for exampleν8 is
a positive bounded measure onX and8(w) = ∫

X
W(g) dν8(g) then

Rµ(w(f1), . . . , w(fn))8(w) = χµ(w,w + h̄K(α1f1 + · · · + αnfn)/2)1/2

×
∫
X

n∏
j=1

(w(fj ) + h̄〈Kfj , g〉/2)W(g) dν8(g).

A sufficient condition for the existence of the integral is that for arbitraryN ∈ N the function
g→ ‖g‖N is inL1(X, ν8).
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